a2 United States Patent

Peng et al.

US009466383B2

US 9,466,383 B2
Oct. 11, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

NON-VOLATILE MEMORY AND METHOD
WITH ADAPTIVE LOGICAL GROUPS

Applicant: SanDisk Technologies Inc., Plano, TX

(US)

Inventors: Yong Peng, Milpitas, CA (US); Rajeev
Nagabhirava, Santa Clara, CA (US)

Assignee: SanDisk Technologies LL.C, Plano, TX
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 216 days.

Appl. No.: 14/144,056

Filed: Dec. 30, 2013

Prior Publication Data

US 2015/0186270 Al Jul. 2, 2015

Int. CL.

GO6F 12/06 (2006.01)

G1IC 16/16 (2006.01)

GO6F 12/10 (2016.01)

GO6F 12/02 (2006.01)

U.S. CL

CPC GI1IC 16/16 (2013.01); GOGF 12/0246

(2013.01); GO6F 12/10 (2013.01); GO6F
2212/2022 (2013.01); GO6F 2212/7201
(2013.01); GO6F 2212/7202 (2013.01); GO6F
2212/7205 (2013.01)

Field of Classification Search
CPC GOGF 12/0653; GO6F 2212/221;
GOGF 2212/2022; GOGF 2212/7201; G11C
16/16
See application file for complete search history.

Host Write /r’(\'dnie Str%m {Long Sequential)
10

(56) References Cited

U.S. PATENT DOCUMENTS

5,070,032 A 12/1991 Yuan etal. ..o 438/267
5,095,344 A 3/1992 Hararioooooovvevvennnn.. 257/328
5,313,421 A 5/1994 Guterman et al. . 365/185.15
5,315,541 A 5/1994 Harari et al. 365/185.13
5,343,063 A 8/1994 Yuanetal ... 257/317
5,570,315 A 10/1996 Tanaka et al. .. . 365/185.22
5,661,053 A 8/1997 Yuanooooevieeiiennnnn 438/257
5,768,192 A 6/1998 Eitan 365/185.24
5,903,495 A 5/1999 Takeuchi et al. 365/185.03
6,011,725 A 1/2000 Eitanc.ooevvenrnne. 365/185.33
6,046,935 A 4/2000 Takeuchi et al. 365/185.03
6,222,762 Bl 4/2001 Guterman et al. 365/185.03
6,567,307 Bl 5/2003 Estakhri
(Continued)

OTHER PUBLICATIONS

Eitan et al., “NROM: A Novel Localized Trapping, 2-Bit Nonvola-
tile Memory Cell”, IEEE Electron Device Letters, vol. 21, No. 11,
2000, pp. 543-545.

Primary Examiner — Yaima Rigol
Assistant Examiner — Glenn Gossage
(74) Attorney, Agent, or Firm — Brinks Gilson & Lione

(57) ABSTRACT

A nonvolatile memory is organized into blocks as erase units
and physical pages as read/write units. A host addresses data
by logical pages, which are storable in corresponding physi-
cal pages. Groups of logical pages may be further aggre-
gated into logical groups as addressing units. The memory
writes host data in either first or second write streams,
writing to respective blocks either logical-group by logical-
group or logical-page by logical-page in order to reduce the
size of logical-to-physical-address maps that are cached in a
controller random-access memory (RAM). A group-level
map may be used to track logical groups. A page-level map
may be used to track logical pages. Only one block at a time
needs be open in the second stream to accept logical pages
from multiple logical groups that are active. Garbage col-
lection is performed on the blocks from each write stream
independently without data copying between the two
streams.

20 Claims, 11 Drawing Sheets

27 Write Stream(Short Non-Seq,) Filled biock pool
220

LPg

30
~
.

L

| LG biocks

Flash
i
:\:>
TRAM Y
> v! RAM
312:1 Cac-{ 1
I hed {!
toyphed 1 Ll
! =
320 350
| ¢ 322, \
! 314 g3
+
]
!
Garbage \Z
Colfection

Adaptive Group-based Mapping

US 9,466,383 B2

Page 2
(56) References Cited 2009/0070518 Al* 3/2009 Traister GOG6F 12/0246
711/103
U.S. PATENT DOCUMENTS 2010/0172180 Al 7/2010 Paley et al.
2010/0174869 Al* 7/2010 Gorobets GOGF 12/0246
7,441,000 B2 10/2008 Estakhri et al. 711/135
7,523,249 Bl 4/2009 Estakhri et al. 2010/0257309 Al* 10/2010 Barsky GOGF 12/0246
7,774,576 B2 /2010 Estakhri et al. 711/103
7,827,378 B2 11/2010 Feldman et al. 2012/0297122 Al* 11/2012 Gorobets GOG6F 12/0246
8,094,500 B2 1/2012 Paley et al. 711/103
8,244,960 B2 8/2012 Paley et al. 2013/0024609 Al* 1/2013 Gorobets GOGF 12/0246
8,700,840 B2 4/2014 Paley et al. 711/103
2005/0144365 Al* 6/2005 Gorobets GO6F 11/1072 2013/0042057 Al* 2/2013 Sinclairc....... GOGF 3/061
711/103 711/103
2008/0301359 Al* 12/2008 Smithcccoen. GO6F 3/0616 . .
711/103 * cited by examiner

U.S. Patent

Oct. 11, 2016

Sheet 1 of 11

US 9,466,383 B2

LBAD

LBAT

LBAZ

LEBAS3

Host's Logical Address Space

FiG. 1

LPG LBAQ

LBAT

LBAZ

LBAT

LR LBAB

LBAD

LBATO

LBATS

LP2 ({LBATS

LBATT

LBATE

LBAZ3

comanoo

YT

Biockd

Example Logical Pages

LEO

LP1

7é
62

300
S

US 9,466,383 B2

Sheet 2 of 11

Oct. 11, 2016

U.S. Patent

toi139jjon
abeqieny

(1¥V ¥ORd)
vy 'Ol

Buiddejy paseq-abed

jood ys0}q pajjid

\'/ R

/_Nmmf%uo 1g 2014

0 —

SIAA HOYS 10 jenusnbeg Buo

o/

£c

dep
18A8]
~abeg

SJLAA ISOH

U.S. Patent

330-0 ~.J

LGE

330-1 |

LG

Oct. 11, 2016

Sheet 3 of 11

Blockl

US 9,466,383 B2

PO

72

62

LP1

LP2

RO AR T O

300-(
S

LPBo9

Block1

LP1000

LP1001

L1002

P T Y T

300-1
S

LP1899

comaxoooo®D

FiG. §

US 9,466,383 B2

Sheet 4 of 11

Oct. 11, 2016

U.S. Patent

(1¥V HoI¥d)
9 'Old

Buiddepy peseq-dnoug

\\\\\\)’/
uonosjjod 7/ P o
A H i o |
S abegsen ‘ /o P
PAREAN VAR ; ;
\\ \\/,/, I/ N i i
S/ T "
/ \\/ or jood Yoojg aai4
S AN -

S USRS VDU U UG VI UGS SUUR VST SIS

i
ENNENNER > B e it it
\ } N /\\
/BN % /,,, 9z “ |
BEENNEN \ e 1-02
NN | z-02 | N
‘ M 2% |
W | N
ﬁ, | sabed piep M dep
NN S ! EVET
\ ,m/w % / w -dnoig
i
N / !
NN t
{ i { L
7 t
R . 5
jood yo0|q pajjid mxé HOYg S [eluanbag Buo SIIAA ISOH

U.S. Patent Oct. 11, 2016 Sheet 5 of 11 US 9,466,383 B2

HOST 8¢

FLASH MEMORY DEVICE 90
Memory Chip 100
Memory
Controller On-Chip
102 Control
Circuit
110
p N » Memory Array
State | 2 200
Mach- {]
ine
A
111, 231 ReadMirite Circuits
(204
FIRM- '
WARE [+ 67
rRAM [63 .
¥ »

FIG. 7

US 9,466,383 B2

Sheet 6 of 11

Oct. 11, 2016

U.S. Patent

200
AN

204 5
.wm m m A4
0 m | ¢
T _ |
H
XSS%SB*SS“%SE
m ! L \Jm
ey
o
”m emu mn Nw
“m L8 m 5 -
H H)
slilel2] §
: = % 3 ©
) Sg 21w z=
Sm w 3 =
v m 55| 2
90 60t 00 00 OO 3t 0O 6O 308 100 OO o S nmu
0 | m! m @ o %
B Fl el 8
M..-w 205 190 00 % K 00 0N DX 00 0 XK m % D! % ,ﬂ
N m L BEIEIE-
o3 m % & &
—d mmosoecscesos > Pl L]
& L eS|
- |
word 5 00 108 00 06 35t 0 05 301 00 00 3
0 i | 7m
S~ -5
m m ,\Jﬂ./ﬁ.. oo %
e i o
Jib o
- m - A w /
Bt 8 <
km \\ i & &
2 I a N
o 4@
Bm S m
U |

Example NAND Array Architecture

FiG. 8

U.S. Patent Oct. 11, 2016 Sheet 7 of 11 US 9,466,383 B2
I [
Wi m . Esaa
y
mE BLOCK m
- |
B —
WL31 | - |
1 BLOCK 1 |
WLTE o 5
e g o o o e e s e i N
N I R (R
Y L
WL15
425,_-.? BLOCK 0 E
WLO = |
mmmmmm 4

E‘\\?ﬁ"ﬂ

BLO

BL1

Erase Block Architecture

FiG. 9

U.S. Patent Oct. 11, 2016 Sheet 8 of 11 US 9,466,383 B2

HOST 80

os/
File System

Application »

A

Clusters(Logical sectors)

A

Host~side Memory Manager (Optional)

Logical sectors

MEMORY DEVICE 90

v Memory Manager 400
Flash Memory
Front-End System 410 200
412
(Host Interface }— 50
Page |~
A
¥ 300
I
I
I
Back-End System |
420
Block| 300

FIG. 10

US 9,466,383 B2

Sheet 9 of 11

Oct. 11, 2016

U.S. Patent

L "OId

Buiddey paseq-dnouis) aandepy

uona8jjod
sbeqien

S¥00iq d1 S¥20i4 O71

JI|—

i g

{191

4091

0z2 QFN
jood yo0jq pajji4 (D9S-UON HoyS)wesng S il (jeyuenbag BuoT) LWgans sl w\ SIIAA 1501

U.S. Patent Oct. 11, 2016 Sheet 10 of 11

Block0

US 9,466,383 B2

LPO
330 |

LP1

LGO

LP999

LP1000

LP1001

LG1

LP1999

w/310

Multiple Logical Groups stored in a LG Block

FIG. 12

Long Sequenti} Write Stream 1

LG Block 1 LG Block 2

LG Block K

Multiple LG Blocks Open in Write Stream 1

FIG. 13

U.S. Patent Oct. 11, 2016 Sheet 11 of 11 US 9,466,383 B2

Qrganizing the non-volatile memory into blocks of memory cells 500
that are erasable together, each block containing a plurality of
physical pages, each physical page confaining a page of memaory
cells that are read or wrilten in parallel and for sloring a logical
page of dala, each logical page having a logical address assigned
by a host

!

Providing a plurality of logical groups provided by partitioning a
logical address space of the host inlo non-overlapping segments
of sequential iogical addresses, said plurality of logical groups
further partitioned into a plurality of logical pages

¥
Responsive 10 the dala having at least a predetermined size or iis 590
logical addresses following sequentially a previous write in a e’
partially filled block in the first stream, writing data of a host write
either o a first wrile stream or, otherwise, 10 a second write
stream

¥
Providing a pool of erase biocks for allocating multiple blocks in _
the first write stream, each of the multiple blocks being openin [830
paraliel in the first write stream for writing logical group by logical
group, and for allocating one block open at a time in the second
write siream, each block being open for writing logical page by
logical page

A
Tracking with a group-level map logical groups stored among the
plurality of blocks in the first write siream

e 540

Tracking with a page-level map obsolete pages among the logical 5E(
groups written in the first write stream and updated pages of the |~
gbsolete pages writien in the first and second write sireams

¥
Performing garbage collection on sach write stream
independently without data copying across each write stream

US 9,466,383 B2

1
NON-VOLATILE MEMORY AND METHOD
WITH ADAPTIVE LOGICAL GROUPS

FIELD OF THE INVENTION

This application relates to the operation of re-program-
mable non-volatile memory systems such as semiconductor
flash memory, and, more specifically, to a flash memory
having good performance for short random writes yet not
incurring a large logical to physical address map.

BACKGROUND OF THE INVENTION

Solid-state memory capable of nonvolatile storage of
charge, particularly in the form of EEPROM and flash
EEPROM packaged as a small form factor card, has recently
become the storage of choice in a variety of mobile and
handheld devices, notably information appliances and con-
sumer electronics products. Unlike RAM (random access
memory) that is also solid-state memory, flash memory is
non-volatile, retaining its stored data even after power is
turned off. Also, unlike ROM (read only memory), flash
memory is rewritable similar to a disk storage device. In
spite of the higher cost, flash memory is increasingly being
used in mass storage applications. Conventional mass stor-
age, based on rotating magnetic medium such as hard drives
and floppy disks, is unsuitable for the mobile and handheld
environment. This is because disk drives tend to be bulky,
are prone to mechanical failure and have high latency and
high power requirements. These undesirable attributes make
disk-based storage impractical in most mobile and portable
applications. On the other hand, flash memory, whether
embedded or in the form of a removable card is ideally
suited in the mobile and handheld environment because of
its small size, low power consumption, high speed and high
reliability features.

Flash EEPROM is similar to EEPROM (electrically eras-
able and programmable read-only memory) in that it is a
non-volatile memory that can be erased and have new data
written or “programmed” into their memory cells. Both
utilize a floating (unconnected) conductive gate, in a field
effect transistor structure, positioned over a channel region
in a semiconductor substrate, between source and drain
regions. A control gate is then provided over the floating
gate. The threshold voltage characteristic of the transistor is
controlled by the amount of charge that is retained on the
floating gate. That is, for a given level of charge on the
floating gate, there is a corresponding voltage (threshold)
that must be applied to the control gate before the transistor
is turned “on” to permit conduction between its source and
drain regions. In particular, flash memory such as Flash
EEPROM allows entire blocks of memory cells to be erased
at the same time.

The floating gate can hold a range of charges and there-
fore can be programmed to any threshold voltage level
within a threshold voltage window. The size of the threshold
voltage window is delimited by the minimum and maximum
threshold levels of the device, which in turn correspond to
the range of the charges that can be programmed onto the
floating gate. The threshold window generally depends on
the memory device’s characteristics, operating conditions
and history. Each distinct, resolvable threshold voltage level
range within the window may, in principle, be used to
designate a definite memory state of the cell.

The transistor serving as a memory cell is typically
programmed from an “erased” state to a “programmed” state
by one of two mechanisms. In “hot electron injection,” a

10

20

35

40

45

2

high voltage applied to the drain accelerates electrons across
the substrate channel region. At the same time a high voltage
applied to the control gate pulls the hot electrons through a
thin gate dielectric onto the floating gate. In “tunneling
injection,” a high voltage is applied to the control gate
relative to the substrate. In this way, electrons are pulled
from the substrate to the intervening floating gate. While the
term “program” has been used historically to describe writ-
ing to a memory by injecting electrons to an initially erased
charge storage unit of the memory cell so as to alter the
memory state, it has now been used interchangeably with
more common terms such as “write” or “record.”

The memory device may be erased by a number of
mechanisms. For EEPROM, a memory cell is electrically
erasable, by applying a high voltage to the substrate relative
to the control gate so as to induce electrons in the floating
gate to tunnel through a thin oxide to the substrate channel
region (i.e., Fowler-Nordheim tunneling.) Typically, the
EEPROM is erasable byte by byte. For flash EEPROM, the
memory is electrically erasable either all at once or one or
more minimum erasable blocks at a time, where a minimum
erasable block may consist of one or more sectors and each
sector may store 512 bytes or more of data.

The memory device typically comprises one or more
memory chips that may be mounted on a card. Each memory
chip comprises an array of memory cells supported by
peripheral circuits such as decoders and erase, write and read
circuits. The more sophisticated memory devices also come
with a controller that performs intelligent and higher level
memory operations and interfacing.

There are many commercially successful non-volatile
solid-state memory devices being used today. These memory
devices may be flash EEPROM or may employ other types
of' nonvolatile memory cells. Examples of flash memory and
systems and methods of manufacturing them are given in
U.S. Pat. Nos. 5,070,032, 5,095,344, 5,315,541, 5,343,063,
and 5,661,053, 5,313,421 and 6,222,762. In particular, flash
memory devices with NAND string structures are described
in U.S. Pat. Nos. 5,570,315, 5,903,495, 6,046,935. Also
nonvolatile memory devices are also manufactured from
memory cells with a dielectric layer for storing charge.
Instead of the conductive floating gate elements described
earlier, a dielectric layer is used. Such memory devices
utilizing dielectric storage element have been described by
Eitan et al.,, “NROM: A Novel Localized Trapping, 2-Bit
Nonvolatile Memory Cell,” IEEE Electron Device Letters,
vol. 21, no. 11, November 2000, pp. 543-545. An oxide-
nitride-oxide (“ONO”) dielectric layer extends across the
channel between source and drain diffusions. The charge for
one data bit is localized in the dielectric layer adjacent to the
drain, and the charge for the other data bit is localized in the
dielectric layer adjacent to the source. For example, U.S.
Pat. Nos. 5,768,192 and 6,011,725 disclose a nonvolatile
memory cell having a trapping dielectric sandwiched
between two silicon dioxide layers. Multi-state data storage
is implemented by separately reading the binary states of the
spatially separated charge storage regions within the dielec-
tric.

Read, Write and Frase Performance

In order to improve read and program performance,
multiple charge storage elements or memory transistors in
an array are read or programmed in parallel. Thus, a “page”
of memory elements or cells are read or programmed
together. In existing memory architectures, a row typically
contains several interleaved pages or it may constitute one
page of contiguous memory cells.

US 9,466,383 B2

3

In flash memory systems, an erase operation may take as
much as an order of magnitude longer than read and program
operations. Thus, it is typical to organize the memory cells
into blocks, and the memory cells in each block are erased
together in a “flash”. Each block typically contains many
pages. In this way, the erase time is amortized over a large
aggregate of memory cells in a block. In some embodiments,
the block of memory cells could be constituted from several
memory planes and is more specifically referred to as a
“metablock”. For example, a block may have 4 MB memory
cells and contain 1K pages if each page has 4 KB memory
cells, so a thousand pages are erased together as a unit.
Impact of Block Architecture on Updates and Garbage
Collection

The nature of flash memory predicates that a memory cell
must always be programmed from the erase state. Unlike
magnetic storage or volatile RAM, a previously written
location cannot be simply overwritten. The previously writ-
ten location must first be erased to the erase state before
another write can take place. Thus, data are written page by
page only to unwritten locations of a block.

If a host writes data of a certain logical address and then
updates the data of the logical address again, the updated
data cannot overwrite the existing location, but must be
written to an erased location. Thus, for the same logical
address there are now a current version and an older version.
Over several generations of updates, this will result in a
number of older versions and a latest updated version of the
data among the blocks. When the data with the logical
address is read, the latest updated version is accessed; the
older versions are treated as obsolete (garbage) data and
ignored.

Through use of the memory, obsolete data may accumu-
late and take up memory space which could otherwise be
used for user data. A garbage collection operation is per-
formed to clean out the obsolete data. Since data is stored in
blocks, a first block containing a mixture of non-obsolete
and obsolete data must first have the non-obsolete data saved
by copying to a second block before the first block can be
erased. In this way, the obsolete data are “collected” so that
the space freed up can be recycled. Garbage collection takes
time as it also involves saving non-obsolete data to another
block. The time and resource expended are exacerbated if
there are more non-obsolete data to copy, which increases
with at least two parameters: block size; and the degree of
mixing of obsolete and non-obsolete data in each block.
Impact of Block Architecture on Logical to Physical Address
Map

Flash memory systems are most commonly provided in
the form of a memory card or flash drive that is removably
connected with a variety of hosts such as a personal com-
puter, a camera or the like, but may also be embedded within
such host systems. A non-volatile memory is typically used
by a host to store host data and to retrieve the data at a later
time. The host supports applications which can generate and
manipulate data files. An operating system in the host
provides a data file structure in which a data file is organized
into a plurality of logical sectors (typically of 512 bytes).
Each logical sector is assigned a logical address, referred to
as LBA (“logical block address”) and where the “block”
here refers to a block (sector) of data. Thus, the operating
system of the host organizes the data from the host-side
logical-sector by logical-sector; each logical sector is
assigned a unique logical address within a continuous virtual
address space of the host. In another embodiment, the unit
of address is a cluster of several logical sectors, such as a
logical page.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 1 illustrates schematically the logical address space
of a host operating system. Currently, a standard logical
addressing scheme is logical block addressing. The host data
is parceled out into sectors or blocks of fixed size, typically
the size of one sector (512 byte). This LBA “block” is not the
same as the erase block of a flash memory. Logical block
addressing simply numbers the logical sectors sequentially
from 0, 1, 2, 3, On the other hand, the erase block of
the physical memory contains a large number of physical
pages, each physical page for storing a logical page of data.
Each logical page may be constituted from one or more
logical sectors. For example, a logical page, such as logical
page 62 of FIG. 2, may contain 4 KB of data corresponding
to 8 logical sectors.

When the currently prevalent LBA interface to the
memory system is used, files generated by a host to which
the memory is connected are assigned unique addresses
within the logical address space of the interface. The
memory system then commonly maps data between the
logical address space and pages of the physical blocks of
memory. The memory system keeps track of how the logical
address space is mapped into the physical memory but the
host has no knowledge of this logical to physical address
mapping. On the other hand, the host keeps track of the
addresses of its data files within the logical address space but
the memory system operates with little or no knowledge of
this file system mapping.

In a host write to the non-volatile memory device, the host
issues a write command together with a range of logical
sector addresses followed by the addressed logical sectors
themselves. Similarly, in reading the memory device, the
host issues a read command together with a range of logical
sector addresses and the device responds by returning the
addressed logical sectors to the host. A host write is depen-
dent on the activity of the application generating the data,
which is generally unpredictable. However, the host write
could be categorized into two main categories: long sequen-
tial write; and short random write. The “long” and “short”
are relative to the length of a run (sequential addresses) of
logical sectors to be written in the context of the physical
block size of the memory device.

On the other hand, the memory device has a different
organization structure due to the physical characteristics and
constraints of the flash memory device. First, a bank of sense
amplifiers operating in parallel enables the memory to be
read or written page by page (physical page). The page of
memory cells could be constituted from several memory
planes, each plane with its own set of sense amplifiers and
the page is more specifically referred to as a “metapage”. For
example, a page may be formed across a row of memory
cells in the memory array (which may include several
planes) and may have 4 KB cells.

FIG. 2 illustrates a number of logical pages addressable
by a host. For example a logical page 62, such as LPO0,
contains a chunk of 8 logical sectors in sequential order
(LBAO, LBAL, . .., LBA7). For expediency, a logical page
is meant to be stored in a physical page of the memory.

When the host writes data to, or reads data from, the
memory system, a controller within the memory system
translates logical addresses received from the host into
physical addresses within the memory array. The logical
sectors of data are stored in the corresponding physical
addresses in the memory. A logical to physical address table
or map or directory is maintained by the controller to keep
track of these address translations.

Thus, another issue related to the block architecture is the
size of the logical to physical address map. A host writes or

US 9,466,383 B2

5

read units of data by their logical addresses. An example of
a unit of data is a sector of 512 bytes. The flash memory
system stores these units of data in some physical locations
having their own physical addresses. Typically, data are
stored page by page, with each page being one or more
sectors. Thus, a map or directory is maintained by the
memory system to enable a unit of data of a given logical
address to be located physically in the memory.

The logical to physical address map is part of system
control and directory data maintained to manage a flash
memory system. The directory data is produced and
accessed during the course of various memory operations.
Thus, its efficient handling and ready access will directly
impact performance. This type of system control and direc-
tory data is also stored in the flash memory itself since the
flash memory is meant for storage and is nonvolatile.
However, with an intervening file management system
between the controller and the flash memory, the data cannot
be accessed as directly and quickly. For example, if the
directory data is stored in the flash memory, its access is
itself subject to a directory lookup. Also, system control and
directory data tends to be active and fragmented, which is
not conducive to being stored in a system with a large size
block.

Conventionally, this type of control and directory data is
cached in the controller RAM, thereby allowing direct and
speedy access by the controller. Typically, after the memory
device is powered up, a process of initialization enables the
flash memory to be scanned in order to compile the neces-
sary system control and directory data to be placed in the
controller RAM. This process takes time and requires suf-
ficient controller RAM capacity, all the more so with ever
increasing flash memory capacity.

Existing Page-Based Mapping

FIG. 3 illustrates a block partitioned into a plurality of
physical pages. In a block 300, each physical page 72 is able
to store a logical page 62. For read and write performance,
the memory cells in a physical page 72 are read or written
in parallel. The block 300 has N physical pages 72 for
storing N logical pages 62 of data when each memory cell
stores one bit of data. For memory cells that each stores M
bits of data, then each physical page 72 will store M logical
pages.

U.S. Pat. No. 6,567,307 discloses a method of dealing
with sector updates among large erase blocks. Multiple
blocks are set up as a scratch pad to store the update data.
Garbage collection operations are performed to consolidate
the valid sectors among the various blocks and rewrite the
sectors into new blocks after rearranging them in logically
sequential order. In this way, a block needs not be erased and
rewritten at every slightest update. However, the logical to
physical mapping is at a fine granularity at the sector or page
level, which requires a large storage for such a map. As a
copy of the map is preferably maintained in the controller
RAM for fast access, a large map requires a large capacity
controller RAM, which is expensive. Also, the fine granu-
larity requires frequent updates of the map.

FIG. 4 illustrates an existing page-based block manage-
ment scheme. Since the memory device writes page by page,
the logical to physical map 23 will have to track each page.
For example, the first host write, W1, writes logical pages
LP0-LP255 into a current open block 20 starting from
physical page P0. Each logical page contains one or more
sectors addressable by LBAs. The second write, W2, writes
an update of the logical page LP1 as logical page LP1' into
physical page P256 which renders obsolete the previously
written LP1 at page P1. The third write, W3, writes logical

20

25

30

40

45

6

page LP301 into physical page P257. Eventually, when the
current open block 20 is filled, it is relegated to a filled block
pool 30 while a new current open block is allocated from the
free block pool 40. When the free block pool 40 is short of
free blocks, it obtains a new one from the filled block pool
30 by a garbage collection operation on a block containing
obsolete pages.

Page-based mapping is optimized for a host write pattern
in which the writes are mostly short, random writes of a few
pages. However, tracking at the page level requires main-
tenance of a large-size map 23 as each block contains a large
number of pages. Referencing the map stored in the flash
memory during write and read operations is cumbersome
and slow. It is preferable to work with a cached copy of the
map in a controller RAM. However, the capacity of the
controller RAM is limited and costly, and will be prohibitive
to fit the entire map if it is at the page level. Thus, either a
large and expensive controller RAM is required to hold the
entire map or when the RAM is insufficient to hold the entire
map, only a small portion of the map is in RAM and the
remaining portion of the map is overlaid in flash memory. In
the latter case, read performance is therefore compromised.

In any case, page-based systems tend to have the update
data distributed over many blocks and the update data may
render many existing blocks partially obsolete. The result
often is a large amount of garbage collection necessary for
the partially obsolete blocks, which is inefficient and causes
premature endurance aging of the memory due to more
frequent erase-cycling. Also, there is no systematic and
efficient way of dealing with sequential update as compared
to non-sequential update.

Existing Group-Based Mapping

One solution to the problem of a large-size map is solved
by tracking the logical to physical mapping at a coarser,
group-based level. Instead of tracking at the page level, a
group of pages is tracked as a unit. The map can therefore
be maintained at a logical group level.

FIG. 5 illustrates each block storing a logical group of
data. For example, each logical group consists of 1000
logical pages. A logical group 330-0 (LGO) consists of
logical pages L.P0-LP999 stored in a block 300-0 such as
Block0. A logical group 330-1 (LG1) consists of logical
pages LP1000-1.P1999 stored in another block 300-1 such as
Blockl. Unlike a logical page which contains one or a few
logical units of data, each logical group contains multiple
logical pages having a large number of logical units of data
(one or two orders of magnitude larger) in sequential logical
addresses. The sequential order means the pages within the
group are self-indexed. For ease of operation, each logical
group has a size that fills a block. Thus, it is sufficient for a
group-level map, such as the group-level map 25 of FIG. 6,
to track the physical block in which the logical group is in.
Once the physical block is located, a given logical address
within the logical group can be located by its sequential
physical order in the block. In this way, the group-level map
25 has a size that can be substantially reduced. For example,
if a logical group contains 1000 logical pages, the map size
can be reduced roughly 1000 times compared to that of a
page-level map.

In practice, a host does not always write in a large
sequential chunk of data that corresponds neatly to a logical
group that fills an entire block. Thus, blocks may also need
to accommodate non-sequential order of logical pages as
well as obsolete pages.

One existing way to avoid mixing of obsolete and non-
obsolete pages in a block is to do a read-modify-write
(“RMW?™). At any time, the sequential order of the pages

US 9,466,383 B2

7

stored in a block is maintained. For example, a certain
logical page in a logical group stored sequentially in a block
is being updated. After the entire block of data is read into
RAM, the certain logical page is updated in RAM and then
the update block of data is rewritten from RAM to a new
block. In this way, the logical to physical address mapping
within a block is unchanged, only the physical block number
need be updated. However, this method of update is ineffi-
cient, as it requires an entire block to be rewritten, even if the
data to be updated only occupies a small portion of the
block. It will also result in a higher frequency of garbage
collection among the memory blocks, which is undesirable
in view of the limited endurance of this type of memory
device.

One solution to avoid RMW in a group-based architecture
is to write to a mixture of sequential and non-sequential
(chaotic) blocks. Flash memory with a block management
system employing a mixture of sequential and chaotic
update blocks is disclosed in United States Patent Publica-
tion No. US-2005-0144365-A1 dated Jun. 30, 2005, the
entire disclosure of which is incorporated herein by refer-
ence. The goal is to store the host writes in logical groups
consisting of a large number of logical sectors or pages in
sequential order in a block. To make garbage collection
simple, the logical group size is aligned to an erase block so
that each block is filled by one logical group. In this way, the
logical to physical map is at the logical group level with a
much reduced size of the map and corresponding capacity of
the controller RAM.

FIG. 6 illustrates an existing group-based block manage-
ment scheme. The goal is to store the host writes in logical
groups, one logical group per block. Each logical group
consists of a large number of logical sectors or logical pages
in sequential order. In this way, the logical to physical map
is at the logical group level (rather than at the page level),
resulting in a much reduced size of the map and correspond-
ing capacity required for the controller RAM. To limit the
scope of the logical addresses in a garbage collection, each
block is filled by one logical group. For example, the logical
group LGO exactly fills the block 20-1.

As described earlier, the host addresses sectors of data by
assigning each with a logical address, LBA. For example,
the address space of the host, LBAO, LBA1, LBA2, . . . is
partitioned into logical groups each having 1000 LBAs so
that LGO contains LBA0-LBA999, L.G1 contains LBA1000
to LBA1999, etc. The sectors of sequential LBAs are packed
into logical pages, LP0, LP1, LP2, In one example, the
logical page is the size of one sector. In another example, the
logical page is the size of more than one sector. Each logical
page is stored in one of physical pages, PO, P1, P2, . . . of
the memory. The physical page is a group of memory cells
that are operated together in a read or write operation. For
example when each logical page is one sector, in a first write,
W1, LBA0-LBA999 are written and thus the logical group
LGO is written with logical pages LP0-L.P999 respectively
filling physical pages P0-P999 of an entire block 20-1.

The host in its various writes can involve LBAs from
different logical groups. When a logical group is involved
the first time, a “sequential” block dedicated to that logical
group such as block 20-1 is opened to store the logical pages
in sequential order. In practice, there could be logical pages
from multiple logical groups being written concurrently and
interleavingly. Thus multiple sequential blocks are opened
concurrently to store the logical pages from the respective
logical groups.

When a host write is not writing in large segments of
logical pages in sequential order, it is written to an update

10

15

20

25

30

35

40

45

50

55

60

65

8

block dedicated to each logical group. The “update” block
(also known as a “chaotic” block) is also allocated to each
logical group to store the “chaotic” fragmented writes and
updates associated with the logical sectors or pages of that
logical group. Thus, each active logical group has two
blocks allocated to it. A first sequential block for writing
sequentially and a second update block for writing chaoti-
cally. For example, in a second write, W2, a single LBA is
written as LP1' to update the existing LP1. This update is
written to P0 of a dedicated update block 20-2 for the logical
group LGO. The previously written LP1 in P1 of sequential
block 20-1 is then rendered obsolete. In a third write, W3,
another single LBA is written as LP301 to P1 of the update
block 20-2.

Eventually, a garbage collection will consolidate the valid
logical sectors or pages of that logical group. It will involve
copying data between the logical group’s pair of sequential
and update blocks to end up with a single block. While
storing logical group by logical group helps to reduce the
size of the map, an additional map is required to track the
chaotic update block at the page level. As noted above, for
N open logical groups, in addition to N sequential blocks,
there will also be N chaotic update blocks to track. Further-
more, as noted, each chaotic or update block must eventually
be consolidated by garbage collection logical group by
logical group, requiring quite a bit of copying of data
between each pair of sequential and update blocks. This
scheme requires keeping track of a large number of open
blocks and is complicated to manage.

Thus, group based mapping will reduce the logical to
physical map size of the sequential blocks but still have to
contend with tracking at the page level for every chaotic or
update blocks associated with each logical group opened for
writes. So while the map size is reduced compared to a
purely page-based mapping, it still places a limit on the
number of logical groups that can be open simultaneously
for writes. In general, group-based mapping is optimized for
writes or reads of large chunks of sequential data but suffers
from very poor random write performance. Furthermore, a
write may be “amplified” by having the same data being
copied or re-written multiple times over the course of
consolidation and garbage collection, which is inefficient.

Therefore there is a general need for high capacity and
high performance non-volatile memory. In particular, there
is a need to have a high capacity nonvolatile memory able
to conduct memory operations in large blocks without the
problems of having to have a large controller RAM to hold
a large logical to physical map and without the problem of
rewriting data multiple times for consolidation and the need
for frequent garbage collections.

SUMMARY OF THE INVENTION

According to a general aspect of the invention, a non-
volatile memory is organized into blocks as erase units and
physical pages as read/write units, each block containing
multiple physical pages of memory cells. A host addresses
data by logical pages, which are storable in corresponding
physical pages. Groups of logical pages are further aggre-
gated into logical groups as addressing units. The memory
writes host data in either first or second write streams,
writing to respective blocks either logical group by logical
group or logical page by logical page in order to reduce the
size of logical to physical address maps that are cached in a
controller RAM.

The first write stream has a pool of open blocks for
attempting to store data logical group by logical group and

US 9,466,383 B2

9

is tracked by a group-level map. The second write stream has
blocks for storing data logical page by logical page and is
tracked by a page-level map. Data from a host write is
written to the first stream when it has at least a predeter-
mined size or its logical addresses follow sequentially to a
previous write in a partially filled block in the first stream.
Otherwise, the data is written to the second write stream.

The predetermined size is preferably adapted to an
expected host write pattern. When data from a host write has
at least the predetermined size, it is written to the first write
stream. If its starting logical address follows sequentially to
a previous write in a partially filled block in the first stream,
it is appended there. If it does not, a new block is allocated
to the first write stream to receive it. In principle, the
predetermined size is such that it is conducive to writing the
blocks in the first write stream logical group by logical group
without the need to allocate a new block beyond a prede-
termined frequency. In one embodiment, the predetermined
size is set to 64 KB.

The group-level map tracks the physical locations of the
logical groups in a block in the first stream. The page-level
map tracks the physical locations of any obsolete logical
pages among the logical groups and the locations of the
updated logical pages.

In a preferred embodiment, the group-level map includes
a flag for each logical group to indicate whether or not the
logical group contains an obsolete logical page. When the
flag indicates that the logical group contains an obsolete
logical page, the page-level map is used to locate any
obsolete logical pages in the logical group and the corre-
sponding updated logical pages.

An open block in the pool of open blocks in the first
stream can be removed from the pool to make room for a
new one in one of two ways. In the first way, the block is
converted from the first stream to the second stream. This is
when the data on the block is out of sequence and can no
longer be stored logical group by logical group. In the
second way, the block is full and placed in a filled block
pool. Similarly a filled block in the second stream is placed
in the filled block pool and replaced by a new block.

The filled block pool contains filled blocks from the first
and second streams. Free blocks are reclaimed from the
filled block pool by garbage collection on selected blocks
containing excessive obsolete data. The garbage collection
will erase a selected block from a given write stream after
salvaging the valid pages to another block in the given
stream. The reclaimed blocks are added to a pool of erase
blocks which can then be allocated as blocks in the first write
stream and in the second write stream. Thus, the controller
performs garbage collection independently on each of the
first and second write streams. Data need not be copied
between the first and second write streams.

In one embodiment, individual memory cells are each
configured to store one bit of data. In another embodiment,
individual memory cells are each configured to store more
than one bit of data.

According to another aspect of the invention, a method of
operating a non-volatile memory, includes organizing the
non-volatile memory into blocks of memory cells that are
erasable together, each block for storing a plurality of
physical pages, each physical page for accessing a prede-
termined number of logical units of data in parallel, each
logical unit having a logical address assigned by a host;
providing a plurality of logical groups provided by parti-
tioning a logical address space of the host into non-over-
lapping groups of sequential logical addresses; writing the
data from a host write either to a first write stream or,

20

35

40

45

50

55

10

otherwise, to a second write stream; providing a pool of
erase blocks for allocating multiple blocks in the first write
stream, each of the multiple blocks being open in parallel in
the first write stream for writing logical group by logical
group, and for allocating blocks sequentially in the second
write stream, each of the blocks being open one at a time for
writing logical page by logical page; responsive to the data
having at least a predetermined size or its logical addresses
following sequentially a previous write in a partially filled
block in the first stream, for writing the data to the first write
stream, otherwise, for writing the data to the second write
stream; tracking with a group-level map logical groups
stored among the plurality of blocks in the first write stream,
said group-level map being maintained in said non-volatile
memory with a copy cached in a random-access memory
(“RAM”) of said controller; tracking with a page-level map
obsolete pages among the logical groups written in the first
write stream and updated pages of the obsolete pages written
in the first and second write streams, said page-level map
being maintained in said non-volatile memory with at least
a portion of a copy cached in the RAM of said controller;
and performing garbage collection independently on each of
the first and second write streams without data being copied
between each of the first and second write streams.

The present invention has the following, features and
advantages. Storing a large portion of the host data at the
logical group level allows a relatively smaller-size map that
can be cached entirely in the controller RAM. At the same
time, short random host writes are stored at the logical page
level with a minimum of open blocks. This scheme enables
more flexibility in block resource allocation and simpler
block management. Furthermore, “write amplification” in
terms of additional copying of data among the blocks due to
garbage collection is minimized as garbage collection is
performed on the blocks from each write stream indepen-
dently without data copying between the two streams.

More specifically, by having the logical group size
adjusted to depend on expected pattern of host writes, more
ofthe host write data could be stored in the first write stream
logical group by logical group. At the same time, the
disadvantage and complications of conventional hybrid
group- and page-level mapping schemes that require dedi-
cated blocks for each logical group and consolidation and
rewrites of data between the group-level and page level
blocks are also avoided.

Since there is only one pool of erased block that is shared
between the first and second write streams, the number of
spare blocks can be reduced compared to prior schemes,
thereby reducing the die size. On the other hand, if the
number of spare blocks are kept the same as prior schemes,
there will be more blocks for a recycling process during
garbage collection. This will improve recycling efficiency
and help to reduce endurance wear.

Other advantages include a simpler design, which can
save developing cycle and CPU bandwidth. Also, unlike
prior schemes, eviction process from single-level cell
(“SLC”) to multi-level cell (“MLC”) memory portion is
avoided, padding of data is not required and garbage col-
lection is simplified as the two write stream are handled
independently. All in all, the invention results in a simpler
and lower-cost memory with better performance.

Additional objects, features and advantages of the present
invention will be understood from the following description
of its preferred embodiments, which description should be
taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates schematically the logical address space
of a host operating system.

US 9,466,383 B2

11

FIG. 2 illustrates a number of logical pages addressable
by a host.

FIG. 3 illustrates a block partitioned into physical pages.

FIG. 4 illustrates an existing page-based block manage-
ment scheme.

FIG. 5 illustrates each block storing a logical group of
data.

FIG. 6 illustrates an existing group-based block manage-
ment scheme.

FIG. 7 illustrates a host and a memory device, according
to an embodiment.

FIG. 8 illustrates a physical page of memory cells, orga-
nized, for example, in the NAND configuration, which can
be sensed or programmed in parallel.

FIG. 9 illustrates schematically an example of a memory
array organized in erasable blocks.

FIG. 10 illustrates a host and memory system with, for
example, memory being managed by a memory manager,
which is a software component that resides in the controller.

FIG. 11 illustrates an adaptive group-based block man-
agement scheme, according to a preferred embodiment of
the invention.

FIG. 12 illustrates multiple logical groups stored in a
logical group (“LG”) block.

FIG. 13 illustrates a preferred embodiment of implement-
ing the first write stream in which multiple LG blocks are
open to receive host writes concurrently.

FIG. 14 is a flow diagram illustrating the operation of the
memory with the adaptive group architecture.

DETAILED DESCRIPTION
Memory System

FIG. 7 illustrates a host and a memory device in which the
features of the present invention are embodied. A host 80 is
in communication with the memory device 90. The host 80
typically sends data to be stored at the memory device 90 or
retrieves data by reading the memory device 90. The
memory device 90 includes one or more memory chips 100
managed by a memory controller 102. The memory chip 100
includes a memory array 200 of memory cells with each cell
capable of being configured as a multi-level cell (“MLC”)
for storing multiple bits of data, as well as capable of being
configured as a single-level cell (“SLC”) for storing 1 bit of
data. The memory chip 100 also includes read/write circuits
204 such as row and column decoders, sense modules, data
latches and I/O circuits. An on-chip control circuitry 110
controls low-level memory operations of each chip. The
control circuitry 110 is an on-chip controller that cooperates
with the read/write circuits 204 to perform memory opera-
tions on the memory array 200. The control circuitry 110
typically includes a state machine 112 to provide chip level
control of memory operations via a data bus 231 and control
and address bus 111.

In many implementations, the host 80 communicates and
interacts with the memory chip 100 via the memory con-
troller 102. The controller 102 cooperates with the memory
chip 100 and controls and manages higher level memory
operations. A firmware 61 provides codes to implement the
functions of the controller 102. A RAM 63 provides the
memory space of the software operations of the controller.

For example, in a host write, the host 80 sends data to be
written to the memory array 200 in logical sectors allocated
from a file system of the host’s operating system. A memory
block management system implemented in the controller
102 stages the sectors and maps and stores them to the

20

30

40

45

55

12

physical structure of the memory array 200. A preferred
block management system is disclosed in United States
Patent Application Publication Number: US-2010-0172180-
Al, the entire disclosure of which is incorporated herein by
reference.

Physical Memory Architecture

In order to improve read and program performance,
multiple charge storage elements or memory transistors in
an array are read or programmed in parallel. Thus, a “page”
of memory elements are read or programmed together. In
existing memory architectures, a row typically contains
several interleaved physical pages or it may constitute one
physical page. All memory elements of a physical page will
be read or programmed together.

FIG. 8 illustrates a physical page of memory cells, orga-
nized, for example, in the NAND configuration, which can
be sensed or programmed in parallel. FIG. 8 essentially
shows a bank of NAND strings 50 in the memory array 200
of FIG. 7. A “page,” such as the page 60, is a group of
memory cells enabled to be sensed or programmed in
parallel. This is accomplished in the read/write circuits 204
by a corresponding page of sense amplifiers 210. The sensed
results are latches in a corresponding set of data latches 220.
Each sense amplifier can be coupled to a NAND string, such
as NAND string 50 via a bit line 36. For example, the page
60 is along a row and is sensed by a sensing voltage applied
to the control gates of the cells of the page connected in
common to the word line WL3. Along each column, each
cell or transistor, such as cell or transistor 10, is accessible
by a sense amplifier via a bit line 36. Data in the data latches
220 are toggled in from or out to the memory controller 102
via a data I/O bus 231.

The page referred to above is a physical page of memory
cells or sense amplifiers. Depending on context, in the case
where each cell is storing multi-bit data, each physical page
has multiple data pages (1-bit data pages).

The NAND string 50 is a series of memory transistors 10
daisy-chained by their sources and drains to form a source
terminal and a drain terminal, respectively, at its two ends.
A pair of select transistors S1, S2 controls the memory
transistors chain via the NAND string’s source terminal and
drain terminal respectively. In a memory array, when the
source select transistor S1 is turned on, the source terminal
is coupled to a source line 34. Similarly, when the drain
select transistor S2 is turned on, the drain terminal of the
NAND string is coupled to a bit line 36 of the memory array.
Each memory transistor 10 in the chain acts as a memory
cell. It has a charge storage element to store a given amount
of charge so as to represent an intended memory state. A
control gate of each memory transistor allows control over
read and write operations. The control gates of correspond-
ing memory transistors of a row of NAND string are all
connected to the same word line (such as WL0, WL1, .. .)
Similarly, a control gate of each of the select transistors S1,
S2 (accessed via select lines SGS and SGD respectively)
provides control access to the NAND string via its source
terminal and drain terminal respectively.

Binary or Single-Level (SLC) and Multi-Level (MLC)
Memory Cells

As described earlier, an example of nonvolatile memory
is formed from an array of field-effect transistors, each
having a charge storage layer between its channel region and
its control gate. The charge storage layer or unit can store a
range of charges, giving rise to a range of threshold voltages
for each field-effect transistor. The range of possible thresh-
old voltages spans a threshold window. When the threshold
window is partitioned into multiple sub-ranges or zones of

US 9,466,383 B2

13

threshold voltages, each resolvable zone is used to represent
a different memory state for a memory cell. The multiple
memory states can be coded by one or more binary bits. In
the case the memory is configured as binary memory, the
margin of operation is wider than that of MLC.

Erase Blocks

One important difference between flash memory and other
types of memory is that a cell must be programmed from the
erased state. That is, the floating gate must first be emptied
of charge. Programming then adds a desired amount of
charge back to the floating gate. It does not support remov-
ing a portion of the charge from the floating gate to go from
a more programmed state to a lesser one. This means that
update data cannot overwrite existing data and must be
written to a previous unwritten location.

Furthermore, erasing empties all the charges from the
floating gate and generally takes appreciable time. For that
reason, it will be cumbersome and very slow to erase cell by
cell or even physical page by physical page. In practice, the
array of memory cells is divided into a large number of
blocks of memory cells. As is common for flash EEPROM
systems, the block is the unit of erase. That is, each block
contains the minimum number of memory cells that are
erased together.

FIG. 9 illustrates schematically an example of a memory
array organized in erasable blocks. Programming of charge
storage memory devices can only result in adding more
charge to its charge storage elements. Therefore, prior to a
program operation, existing charge in a charge storage
element of a memory cell must be removed (or erased). A
non-volatile memory such as EEPROM is referred to as a
“Flash” EEPROM when an entire array 200 of cells, or
significant groups of cells of the array, is electrically erased
together (i.e., in a flash). Once erased, the group of cells can
then be reprogrammed. The group of cells erasable together
may consist of one or more addressable erase unit or block
300. The erase unit or block 300 typically stores one or more
physical pages of data, the physical page being a minimum
unit of programming and reading, although more than one
page may be programmed or read in a single operation. Each
page typically stores one or more sectors of data, the size of
the sector being defined by the host system. An example is
a sector of 512 bytes of user data, following a standard
established with magnetic disk drives, plus some number of
bytes of overhead information about the user data and/or the
block in which it is stored.

In the example shown in FIG. 9, individual memory cells
in the memory array 200 are accessible by word lines 42
such as WLO-WLy and bit lines 36 such as BL0O-BLx. The
memory is organized into erase blocks, such as erase blocks
0,1, ... m. Ifthe NAND string 50 (see FIG. 8) contains 16
memory cells, then the first bank of NAND strings in the
array will be accessible by select lines 44 and word lines 42
such as WL0 to WL15. The erase block 0 is organized to
have all the memory cells of the first bank of NAND strings
erased together. In memory architecture, more than one bank
of NAND strings may be erased together.

In current commercial flash memory systems, the size of
the erase unit has been increased to a block of enough
memory cells to store multiple sectors of data. Indeed, many
pages of data are stored in one block, and a page may store
multiple sectors of data. Further, two or more blocks are
often operated together as metablocks, and the pages of such
blocks may be logically linked together as metapages. A
page or metapage of data are written and read together,
which can include many sectors of data, thus increasing the

10

15

20

25

30

35

40

45

50

55

60

65

14

parallelism of the operation. Along with such large capacity
operating units the challenge is to operate them efficiently.

For ease of explanation, unless otherwise specified, it is
intended that the term “block™ as used herein refer to either
the block unit of erase or a multiple block “metablock,”
depending upon whether metablocks are being used in a
specific system. Similarly, reference to a “page” herein may
refer to a unit of programming within a single block or a
“metapage” within a metablock, depending upon the system
configuration.

Block Management System

As described earlier, owing to the difference in structures
and constraints between the host and the memory, the host’s
logical addresses cannot be simply mapped directly to the
memory’s physical addresses. It has to go through a block
management system with a translation table or directory
map in the memory controller to place the host write into the
physical memory units of the flash memory. In particular, the
block management system has to convert the random host
write to sequential-like write on the flash memory and
manages various aspects of block operations.

FIG. 10 illustrates memory being managed by a memory
manager 400, which is a software component that resides in
the controller. The memory array 200 is organized into
blocks, each block of cells being a minimum unit of erase.
Depending on implementation, the memory device 90 may
operate with even larger units of erase formed by an aggre-
gate of blocks into “metablocks”.

The host 80 accesses the memory array 200 when running
an application under a file system or operating system.
Typically, the host system addresses data in units of logical
sectors where, for example, each sector may contain 512
bytes of data. Each logical sector has an LBA. Also, it is
usual for the host to read or write to the memory device 90
in units of logical clusters, each consisting of one or more
logical sectors. In some host systems, an optional host-side
memory manager may exist to perform lower level memory
management at the host. In most cases during read or write
operations, the host 80 essentially issues a command to the
memory device 90 to read or write a segment containing a
string of logical sectors of data with contiguous addresses.

The memory manager 400 performs the function of the
block management system. It is implemented in the control-
ler 102 (see FIG. 7) of the memory device 90 to manage the
storage and retrieval of the data of host logical sectors
among memory pages 60 in memory blocks 300 (or meta-
blocks) of the flash memory 200. The memory manager 400
comprises a front-end system 410 and a back-end system
420. The front-end system 410 includes a host interface 412.
The back-end system 420 includes a number of software
modules, including a block management system for manag-
ing erase, read, and write operations of the blocks. The
memory manager 400 also maintains system control data
and directory data associated with its operations among the
flash memory 200 and the controller RAM 63 (see FIG. 7).

The memory manager 400 is preferably implemented in
the controller 102 (see FIG. 7). It translates logical addresses
received from the host 80 into physical addresses within the
memory array, where the data are actually stored, and then
keeps track of these address translations.

It has been described in the background section that there
are two existing block management schemes. For example,
FIG. 4 illustrates a page-based mapping in which a series of
host writes in a single write stream fills up one block after
another block. When a block has accumulated more than a
predetermined number of obsolete logical pages, it will be
garbage-collected. The resultant logical to physical address

US 9,466,383 B2

15

map is tracking at the logical page level and is therefore of
necessary large size and would require a very expensive,
large-capacity controller RAM to cache it. Alternatively,
FIG. 6 illustrates a group-based mapping in which the
logical addresses of the host are partitioned in logical
groups. The logical pages within each logical group fit
neatly within a block and are tracked as a single entity,
resulting in a much smaller map. There are two write streams
directed to two dedicated blocks opened for each logical
group that is being written concurrently. When the host write
for a given logical group is sequential in logical address, it
is written in the first write stream to a sequential block for
that logical group. When the host write for that logical group
is non-sequential or chaotic, it is written in the second write
stream to a chaotic update block for that logical group. So
at any time, there may be many write streams writing to
many open blocks. The number of open blocks are kept
under a maximum number by consolidating a pair of blocks
for a logical group into a filled sequential block in order to
reduce the number of concurrently open logical groups.
Adaptive Logical Group Mapping

According to a general scheme of the invention, a non-
volatile memory is organized into blocks, each block for
storing multiple logical pages of data that are block-erasable.
Two types of blocks are provisioned for respectively writing
in two separate write streams. The first write stream contains
blocks of the first type (“LG blocks”), which store data
logical-group by logical-group, where each logical group is
a group of logical pages in sequential order of logical
addresses. The second write stream contains blocks of the
second type (“LP blocks™), which store data logical-page by
logical-page. In a series of host writes, each host write is
adaptively written either to an LG block in the first stream
or to an LP block in the second stream. The LP blocks
require a page-level map to track the location of the logical
pages in the LP blocks. On the other hand, the LG blocks
need a group-level map of much reduced size to track the
location of the logical groups among the L.G blocks. After
one or more logical pages of a logical group stored in an LG
block has been updated by storing those updated logical
pages in a LP block, the page-level map is also used to keep
track of those updated logical pages as well as the corre-
sponding obsoleted logical pages in the LG block.

The use of LG blocks in the first write stream will
alleviate the capacity requirement of a controller RAM
needed to cache the maps. The use of LP blocks in the
second write stream will take care of the short, random host
writes. Moreover, compared to existing schemes, the present
scheme is much simplified with the second write stream
needing only one open block at a time. Also, data in the
blocks of the two streams need not mix as operations such
as consolidations and garbage collection in each stream are
performed independently. This allows for greater flexibility
and economy. In contrast, prior group-based schemes have
many more write streams, basically each active logical
group must have a pair of blocks open to receive sequential
and non-sequential writes respectively. For that reason they
demand more block resources and require consolidation and
garbage collection of data between each pair of blocks on a
logical-group by logical-group basis.

FIG. 11 illustrates an adaptive group-based block man-
agement scheme, according to a preferred embodiment of
the invention. A host write is directed to either a first write
stream 210 or to a second write stream 220. The memory
manager 400 (see FIG. 10) inspects the incoming host write
and, based on the logical addresses of the data to be written,
determines if the write is a long sequential write or a short

20

40

45

55

60

16

non-sequential write. When the host write is a long sequen-
tial write, it is directed to a LG block 310 in the first write
stream 210. When the host write is non-sequential, it is
directed to a LP block 320 in the second write stream 220.

FIG. 12 illustrates multiple logical groups stored in a LG
block. Data is being stored in a LG block 310 as entire
logical groups 330, such as LGO0, LG1, In the example
shown in FIG. 12, each LG block stores multiple logical
groups and each logical group contains 1000 logical pages
62.

FIG. 13 illustrates an example of the first write stream in
which multiple LG blocks are open to receive host writes
concurrently. HEssentially, first write stream 210 is further
branched out into K sub-streams, such as 210-1,
210-2, .. ., 210-K, one for each open LG block, such as LG
block 1 310-1, LG block 2 310-2, . . ., LG block K 310-K.

Referring again to FIG. 11, the LG block 310 and LP
block 320 are memory blocks of the memory array 200 (see
FIG. 7). Both of them are allocated from a free block pool
40. Typically, multiple LG blocks are open concurrently in
the first write stream to store data from host writes logical-
group by logical group, and at least one LP block at a time
is open in the second stream to store data logical-page by
logical-page (see FIG. 11).

When a block from either stream is full, it is relegated to
a filled block pool 30. Also, when a LG block from the first
stream is closed, it is relegated to the filled block pool 30.

The filled block pool 30 contains filled blocks from the
first and second streams. Free blocks are reclaimed from the
filled block pool 30 by garbage collection on selected blocks
containing excessive obsolete data. The garbage collection
will erase a selected block from a given write stream after
salvaging the valid pages to another block in the same given
stream. Thus, the controller performs garbage collection
independently on each of the first and second write streams.
Data need not be copied between the first and second write
streams.

The reclaimed blocks are added to the free block pool 40.
New erase blocks are allocated from the free block pool 40
to the first write stream and the second write stream.

An open LG block 310 in the pool of open blocks in the
first stream 210 can also be removed from the pool when the
open LG block 310 is converted from a block in the first
stream to a block in the second stream. This is when the data
in the open LG block 310 is out of sequence and can no
longer be stored logical-group by logical-group. Then the
open LG block 310 is converted to an open LP block 320 in
the second stream 220. No additional copying of data
between blocks is needed. The conversion only requires an
update of the logical to physical maps.

The data written into LG blocks 310 in the first write
stream 210 is tracked at the logical-group level with a
relatively smaller-size logical-group-level map (“LGM”)
312. The disadvantage of a large-size map due to only
page-level storing blocks is avoided. This only leaves LP
blocks 320 in the second write stream 220 storing short and
random host writes, logical page by logical page, to be
tracked at the page-level with a relatively larger-size map
(“LPM™) 322. This results in an overall reduction in map
size in which the entire LGM 312 and at least a portion of
the LPM 322 may be included in a cached map 314 cached
in the controller RAM 63. The LGM 312 and LPM 322 are
also maintained in the nonvolatile memory 200.

The memory manager 400 inspects the data of the incom-
ing host write and deems it to be a “long sequential” write
if it is conducive to be written to a LG block so that

US 9,466,383 B2

17

eventually an entire logical group will be written. In par-
ticular the host write is a long sequential one if one of the
following is satisfied:

(1) its starting logical address is at the start of a logical
group;

(ii) its starting logical address follows the last logical
address written in an open LG block;

(iii) it is at least of a predetermined size. For example, it
is at least of'a 64 KB chunk size. If the size of a logical page
is 4 KB, then it is at least 16 logical pages.

An example of a series of host writes writing into either
first or second write stream will illustrate how the two write
streams operate.

Logical Addresses

LBA=host address of logical unit, such as a sector of 512
bytes.

LP=logical page consisting of 8 LBAs (4 KB).
LG=logical group consisting of 1K LPs (8K LBAs or 4
MB).

Physical Addresses

P0-P1999=2000 physical pages in a block.
Block=physical erase block of 8 MB consisting of 256
physical pages.

Therefore, each physical page stores 1 LP, and each block
stores 2048 LPs or 2 LGs.

Maps (Logical to Physical Addresses)

LGM=Logical Group-level map tracking the physical loca-
tion of LG. It is maintained in non-volatile memory and is
also cached in the controller RAM.

LPM=Logical Page-level map tracking the physical location
of LP. It is maintained in non-volatile memory and at least
a portion is also cached in the controller RAM if there is
room.

Cached Map is in the Controller RAM containing a cached
copy of LGM and at least a portion of the latest changes in
LPM.

The long sequential write is written to a LG block in the
first write stream. The host write is deemed ‘“short non-
sequential” if it does not qualify as “long sequential” as
defined above.

1. Host write 1 writes the entire LG0 (LP0-L.P999) and
this is a long sequential write, which goes to the first write
stream and is placed in a LG block, (e.g., Block 10, Pages
P0-P999). The LGM and LPM have the following entries:

10

15

20

25

30

35

40

18
previous LG0 becomes obsolete and the new version LG0'
does not have obsolete LPs yet, so the Dirty Flag=0. The
LGM and LPM have the following entries:

LGM(2)
LG# LG Address Dirty Flag
0 B10, P1000 0
LPM(2)
LPM Address LG#, LP# LP address

Before this new LG0' write is completed, the latest LGM
and LPM entries above are only in the cached Map in RAM.
The non-volatile copy of LGM and LPM are not updated
until the write is completed. So for a read operation, a
lookup for the physical address of a given LP will involve
the following:

(1) Check the cached map, if the LP is listed, get the
physical address.

(2) If not in the cached map, read the LGM. If the LG
entry is clean, then get the address from LGM.

(3) If the Dirty Flag indicates that it is not clean, look for
the LP in the LPM at the address given in the LPM. If the
LP is listed in the LPM, then get the physical address from
the LPM.

(4) It the LP is not listed in the LPM, then get the physical
address from the LGM.

3. Host write 3 writes another version of LP0', denoted by
LP0", and this is a short non-sequential write, which goes to
write stream 2 and is placed in a LP block (e.g., Block 80,
Page 0). The logical group LG0 now contains an obsolete
logical page LP0' with the updated LP0" in a LP block. So
the Dirty Flag is set to “1” to denote that L.G0 contains
obsolete data (i.e., LP0'). While the newer version (LP0") is
written to Block 80, Page 0, this address information is also
recorded in the LPM map, whose entry is to be found in
Block 2, Page 0. The LGM and LPM have the following
entries:

45
LGM(1) LGM(3)
LG# LG Address Dirty Flag LG# LG Address Dirty Flag
0 B10, PO 0 50 0 B10, P1000 1
LPM(1 LPM(3
M 55 3
LPM Address LG#, LP# LP address LPM Address LG#, LP# LP address
— — — B2, PO 0,0 B8O, PO
The entire LGO is written with no obsolete LPs yet, so it 60 As explained before, a portion of the LPM is also cached

is “clean” as indicated by Dirty Flag=0 in the LGM. The
LPM does not have any new entries.

2. Host write 2 writes an updated version of LG0, denoted
by LGO' (LP0'-L.P999"), and this is a long sequential write,
which goes to the first write stream and is placed in the same
LG block (e.g., Block 10, Pages 1000-1999) after the
previous LGO. The LG Address is reset to B10, P1000. The

65

in the controller RAM for faster access. Since there is only
1 LPM entry update, it is likely to remain in the LPM entry.
Typically, after a few LPM entries have accumulated they
will be written altogether to the LPM in non-volatile
memory. However, for the sake of illustration, the LPM
entry shows as if it has already been written to the LPM in
Block 2, Page 0.

US 9,466,383 B2

19

4. Host write 4 writes another version of LP0" and
LP1'-LP15', and this is deemed a sequential write, which
goes to the first write stream and since the previous Block 10
storing L.GO is full, the new version is placed in a newly
allocated LG block (e.g., Block 11, Page 0). This is an
open-ended write, and also the mapping information is
maintained in cache RAM. LG0 now contains obsolete
pages LP0" and LP1'-LP15', with the updated versions in a
new LG block. So the Dirty Flag is set to “1” to denote that
LGO contains obsolete data. For example, relative to the last
LPM entry for L.GO, the previous update LP0" is now itself
rendered obsolete by LP0' which is stored in Block 11, Page
0. This address information is recorded in the LPM, whose
entry is to be found in Block 2, Page 1.

The LGM and LPM have the following entries:

LGM(4)
LG# LG Address Dirty Flag
0 B10, P1000 1
LPM(4)
LPM Address LG#, LP# LP address
B2, P1 0, 0-15 B11, PO-P15

5. Host write 5 writes another version of LP32', denoted
by LP32", and this is deemed a short non-sequential write,
which goes to write stream 2 and is the new version is placed
in the next available page in existing LP block (e.g., Block
80, Page 1). This is addressed is entered in LPM at (e.g.,
Block 2, Page 2). LG0 now contains an obsolete page [LP32'.
So the Dirty Flag is set to “1” to denote that the LG contains
obsolete data. The LGM and LPM have the following
entries:

LGM(5)
LG# LG Address Dirty Flag
0 B10, P1000 1
LPM(5)
LPM Address LG#, LP# LP address
B2, P2 0,32 B0, P1

6. Host write 6 writes another version of LP0" and
LP1"-L.P15", and this is deemed a sequential write, which
goes to the first write stream. Since the previous Block 10
storing L.GO is full and the current write does not continue
on the open-ended LG Block 11, Block 11 is closed to make
room so that the current write is done on a newly allocated
block (e.g., Block 12, Page 0). This is another open-ended
write, and also the mapping information is maintained in
cache RAM. LG0 now contains obsolete pages LP0" LP1"-
LP15" and LP32', with the updated version of LP0"" and
LP1" <-LP15" * in a new LG block (B12, P0). So the Dirty
Flag is set to “1” to denote that the LG contains obsolete
data.

15

20

25

30

40

45

50

55

20
The open-ended Block 11 is closed by converting from a
LG block to a LP block. This is accomplished simply by
updating the LPM page. In this way, there is no need to copy
existing data compared to conventional cases. After the
conversion, the LGM and LPM have the following entries
for LGO:

LGM(6)
LG# LG Address Dirty Flag
0 B10, P1000 1
LPM(6)
LPM Address LG#, LP# LP address
B2, P3 0, 0-15 B12, P0-P15
0,32 B0, P1

After the new LG block 12 is allocated, it will essentially
be similar to the situation given in host write 4.

FIG. 14 is a flow diagram illustrating the operation of the
memory with the adaptive group architecture.

STEP 500: Organizing the non-volatile memory into
blocks of memory cells that are erasable together, each block
containing a plurality of physical pages, each physical page
containing a page of memory cells that are read or written in
parallel and for storing a logical page of data, each logical
page having a logical address assigned by a host.

STEP 510: Providing a plurality of logical groups pro-
vided by partitioning a logical address space of the host into
non-overlapping segments of sequential logical addresses,
said plurality of logical groups further partitioned into a
plurality of logical pages.

STEP 520: Responsive to the data having at least a
predetermined size or its logical addresses following
sequentially a previous write in a partially filled block in the
first stream, writing data of a host write either to a first write
stream or, otherwise, to a second write stream.

STEP 530: Providing a pool of erase blocks for allocating
multiple blocks in the first write stream, each of the multiple
blocks being open in parallel in the first write stream for
writing logical group by logical group, and for allocating
one block open at a time in the second write stream, each
block being open for writing logical page by logical page.

STEP 540: Tracking with a group-level map logical
groups stored among the plurality of blocks in the first write
stream.

STEP 550: Tracking with a page-level map obsolete pages
among the logical groups written in the first write stream and
updated pages of the obsolete pages written in the first and
second write streams.

STEP 560: Performing garbage collection on each write
stream independently without data copying across each
write stream.

The foregoing detailed description of the invention has
been presented for purposes of illustration and description.
It is not intended to be exhaustive or to limit the invention
to the precise form disclosed. Many modifications and
variations are possible in light of the above teaching. The
described embodiments were chosen in order to best explain
the principles of the invention and its practical application,
to thereby enable others skilled in the art to best utilize the
invention in various embodiments and with various modi-

US 9,466,383 B2
21

fications as are suited to the particular use contemplated. It
is intended that the scope of the invention be defined by the
claims appended hereto.

22
6. The nonvolatile memory as in claim 1, wherein:
the data from the host write does not have a starting
logical address that follows sequentially on a previous

It is claimed:

1. A nonvolatile memory, comprising:

an array of memory cells organized into blocks as erase
units and physical pages as read/write units, each
physical page for storing a logical page of data, each
logical page having a logical address assigned by a
host;

a plurality of logical groups provided by partitioning a
logical address space of the host into non-overlapping
groups of sequential logical addresses, each logical

said controller has the data from the host write appended
after the previous write in the partially filled block.

5

10

write in a partially filled block in the first write stream
but is at least of the predetermined size; and

said controller has the data from the host write written to
a new block allocated to the first write stream.

7. The nonvolatile memory as in claim 1, wherein each of

the memory cells stores one bit of data.

8. The nonvolatile memory as in claim 1, wherein each of

the memory cells stores more than one bit of data.

9. The nonvolatile memory as in claim 1, wherein:
said group-level map includes a flag for each logical
group to indicate whether or not a corresponding logi-

group comprising a plurality of corresponding logical 15 cal group contains an obsolete logical page.
pages; 10. The nonvolatile memory as in claim 9, wherein:
a controller, for writing data from a host write to either a when the flag for a logical group indicates that the logical
first write stream or a second write stream; group in a block contains an obsolete logical page, any
apool of erase blocks for allocating multiple blocks in the obsolete logical pages in the logical group is located in
first write stream, each of the multiple blocks being 20 the block by said page-level map.
open in parallel in the first write stream for writing 11. A method of operating a non-volatile memory, com-
logical group by logical group, and for allocating prising:
blocks sequentially in the second write stream, each of organizing the non-volatile memory into blocks of
the sequentially allocated blocks being open one at a memory cells that are erasable together, each block
time for writing logical page by logical page; 25 containing a plurality of physical pages, each physical
said controller, responsive to the data from the host write page containing a page of memory cells that are read or
having at least a predetermined size or its logical written in parallel and are for storing a logical page of
addresses following sequentially a previous write in a data, each logical page having a logical address
partially filled block in the first write stream, for writing assigned by a host;
the data to the first write stream, otherwise, for writing 30 providing a plurality of logical groups by partitioning a
the data from the host write to the second write stream; logical address space of the host into non-overlapping
a group-level map for tracking logical groups stored groups of sequential logical addresses, said plurality of
among the plurality of blocks in the first write stream, logical groups further partitioned into a plurality of
said group-level map being maintained in said non- logical pages;
volatile memory with a copy of said group-level map 35 writing data from a host write either to a first write stream
cached in a random-access memory (RAM) of said or to a second write stream;
controller; providing a pool of erase blocks for allocating multiple
a page-level map for tracking obsolete pages among the blocks in the first write stream, each of the multiple
logical groups written in the first write stream and blocks being open in parallel in the first write stream for
updated pages of the obsolete pages written in the first 40 writing logical group by logical group, and for allocat-
and second write streams, said page-level map being ing blocks sequentially in the second write stream, each
maintained in said non-volatile memory with at least a of the sequentially allocated blocks being open one at
portion of a copy of said page-level map cached in the a time for writing logical page by logical page;
RAM of said controller; and responsive to the data from the host write having at least
said controller performing garbage collection indepen- 45 a predetermined size or its logical addresses following
dently on each of the first and second write streams sequentially a previous write in a partially filled block
without data being copied between each of the first and in the first write stream, for writing the data from the
second write streams. host write to the first write stream, otherwise, for
2. A nonvolatile memory as in claim 1, wherein: writing the data from the host write to the second write
a block containing obsolete and valid logical pages to be 50 stream;
reclaimed in a given write stream has the valid logical tracking, with a group-level map, logical groups stored
pages salvaged to another block of the same given write among the plurality of blocks in the first write stream,
stream in a garbage collection before being erased and said group-level map being maintained in said non-
added to the pool of erase blocks. volatile memory with a copy cached in a random-
3. The nonvolatile memory as in claim 1, wherein: 55 access memory (RAM) of a controller of said non-
the predetermined size allows writing the blocks logical volatile memory;
group by logical group in the first write stream without tracking, with a page-level map, obsolete pages among
the need to allocate a new block beyond a predeter- the logical groups written in the first write stream and
mined allocation frequency. updated pages of the obsolete pages written in the first
4. The nonvolatile memory as in claim 1, wherein the 60 and second write streams, said page-level map being
predetermined size is 64 kilobytes (KB). maintained in said non-volatile memory with at least a
5. The nonvolatile memory as in claim 1, wherein: portion of a copy cached in the RAM of said controller;
the data from the host write has a starting logical address and
that follows sequentially on a previous write in a performing garbage collection independently on each of
partially filled block in the first write stream; and 65 the first and second write streams without data being

copied between each of the first and second write
streams.

US 9,466,383 B2

23

12. The method as in claim 11, further comprising:

reclaiming a block containing obsolete and valid logical
pages in a given write stream in a garbage collection by
salvaging the valid logical pages to another block of the
same given write stream;

erasing the reclaimed block; and

adding the reclaimed block to the pool of erase blocks.

13. The method as in claim 12, wherein:

the predetermined size allows writing the blocks logical
group by logical group in the first write stream without
the need to allocate a new block beyond a predeter-
mined allocation frequency.

14. The method as in claim 11, wherein the predetermined

size is 64 kilobytes (KB).

15. The method as in claim 11, wherein:

the data from the host write has a starting logical address
that follows sequentially on a previous write in a
partially filled block in the first write stream; and

said writing data from the host write appends the data
from the host write after the previous write in the
partially filled block.

10

20

24

16. The method as in claim 11, wherein:

the data from the host write does not have a starting
logical address that follows sequentially on a previous
write in a partially filled block in the first write stream
but is at least of the predetermined size; and

said writing data from the host write writes the data from
the host write to a new block allocated to the first write
stream.

17. The method as in claim 11, wherein each of the

memory cells stores one bit of data.
18. The method as in claim 11, wherein each of the
memory cells stores more than one bit of data.

19. The method as in claim 11, wherein:

said group-level map includes a flag for each logical
group to indicate whether or not a corresponding logi-
cal group contains an obsolete logical page.

20. The method as in claim 19, wherein:

when the flag for a logical group indicates that the logical
group in a block contains an obsolete logical page, any
obsolete logical pages in the logical group is located in
the block by said page-level map.

#* #* #* #* #*

